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I use the first wave of COVID-19 as a natural experiment to document evidence of flexi-
bility on the German day-ahead electricity market. I parameterize a model that represents
uncertainty on the demand side as intermittency of renewables. I then compare pre- to
post-COVID-19 data to investigate lower-bound economic implications. Post-COVID-19
and with 44% of renewable shares, electricity prices were most sensitive to fuel costs, and
almost completely passed through, while they remained rigid to CO2 costs. A decrease in
demand consumption had a detrimental welfare effect on both, consumers and producers.
An increase in demand consumption was slightly beneficial in the afternoon peak, mainly
for consumers. Although the distributional gap was reduced, both actors, were worst off
post-COVID-19. This kind of flexibility response was likely the result of a reduction in the
minimum generation. CO2 emissions were lower by 22% on average, of which emissions
from lignite showed only a small reduction of 8% of total emissions from fossil fuels. If
the observed consumption pattern persists to some extent, in a market with higher renew-
able shares and more extreme weather conditions, more appropriate market rules would be
necessary to achieve allocative efficiency.

1 Introduction

If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.
Anonymous.

In 2008, the National Renewable Energy Laboratory introduced a rapid diagnosis to il-
lustrate the change in ramping requirements arising from the expansion of renewables; this
diagnosis was later referred to as the “duck chart” (or the duck curve from here on) by the
California Independent System Operator in 2013 (1; 2). We can construct the duck curve
for a set of days, or average time frames, using the net load, where the net load is the total
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load requirement minus renewables from wind and solar, either actual or forecasted. By
mirroring the effects of renewables on conventional generation, the duck curve helps to illus-
trate the problem of curtailment, that is, the effects of reducing or shutting down renewable
production due to overgeneration, and its consequent increase in costs and incurred losses
in reducing greenhouse gas emissions. To avoid curtailment, potential solutions from the
supply side include operating at a minimum generation level (reducing conventional gener-
ation or “fattening the duck”), shifting supply via storage (also referred to as “flatenning
the duck”), offering more flexible generation, and engaging in regional interchange. From
the demand side, mainly via “flatenning the duck”, common solutions include shifting load
(either in response to higher prices or to market-based incentives), designing flexible tariffs,
and organizing optimized purchases (e.g., via virtual power plants). Other demand-side
solutions that fatten the duck include providing services to reduce conventional generation
at part load (2). To date, these solutions can be implemented, although with many restric-
tions, in the balancing, reserves, day-ahead, and real-time electricity markets. In sum, the
problem of curtailment in systems under renewables expansion entails not only analyzing
the technical impacts of curtailment on the reliability of the grid but also analyzing the
economic impacts of energy and climate policies, such as the renewable portfolio standard
(RPS), the emissions trading scheme (ETS), carbon price controls, and direct taxes on
carbon in electricity systems.

Literature review.- Various studies have examined least-cost solutions to avoid curtail-
ment under policies addressing climate change. For example, (3) found that lower-emission
and flexible plants with a given specified ramp rate are likely to dominate the Australian
electricity market. Further, (4) conceptualized and modeled a probabilistic duck curve to
plan flexible resource adequacy for Qinghai, China. Under high photovoltaic shares, they
found that a combination of retrofitted coal units with storage would be the least-cost
option. In addition, for the wost overgeneration scenario cases, the most efficient solutions
were suggested to be demand response solutions, as they have near-zero capital investment.
Focusing on demand side solutions in Germany, (5) combined the eLOAD model with a
survey on industrial consumers and found that only 3.5% of industrial consumers con-
ducted demand response. An additional minimum deployment of 0.13 TWh was available
in the short term to reduce renewable surplus electricity at peak hours (negative demand
response), which translated in about e3 million in revenues. From a program in the PJM
electricity market under locational marginal prices, (6) found that negative demand re-
sponse resulted in higher wealth transfers from generators to non-price-responsive loads
compared to the system as a whole. In addition, the value of saved costs exceeded con-
sumer subsidies, and the subsidies provided a mechanism to correct two market failures:
treating demand as inelastic and the prevalence of free-riding behavior during load curtail-
ment. They concluded that systems will obtain higher benefits from programs that achieve
higher values of price elasticity of demand. Focusing on positive demand response, namely
an increase in demand due to lower electricity prices during off-peak hours (using discount
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rates from a survey on a Time of Use tariff or ToU), (7) designed a multi-hour net benefit
test to show that system benefits are higher under a positive demand response compared to
a negative one. Further, (8) proposed the use of the net load concept for the future design
of price-responsive electricity tariffs, such as ToU or critical peak pricing. They found that
in Germany, the net load at peak hours coincided with price inelastic responses, while at
off-peak hours it coincided with price elastic responses. In addition, tariffs should differ
during the day by more than the current two options (day and night) and according to
net load levels. Tariffs should also differ during the week (weekdays differ from weekends
and holidays), and in between seasons (summer tariffs would differ from winter tariffs). In
California, (2) recommended shorter scheduling intervals for system operations. Moreover,
they found that variations in the duck shape would be best addressed by using a combi-
nation of grid flexibility options with price-responsive tariffs and fixed price intervals.
Regarding studies on electricity systems investigating energy and climate policy impacts
on economic outcomes, (9) examined the merit order effect under the implementation of
RPS in Germany. They found that there were wealth transfers from households and small
business to energy-intensive industries. In another study, (10) examined the distributive
effects between producers and consumers under RPS and ETS. They found an opposite dis-
tributive effect due to the interaction of both policies and suggested that a mix of policies
would be better for the system in terms of achieving allocative efficiency. Using theory and
solving a numerical exercise with the model EMMA reimplemented in PyPSA, (11) argued
that the downward trend in market values is a result of the policies in place, in particu-
lar feed-in-tariffs and RPS, and not of the variability of renewable production. Moreover,
carbon prices enable producers to recover their costs. Thus, total system cost would be a
better measure of market integration. They suggested that market values would remain
stable even in systems under 100% renewables as long as flexibility for transmission and
storage are available in the grid.

From these findings, it follows that quantifying the economic impact of solutions that
can provide flexibility for electricity systems under renewable expansion is of timely impor-
tance; this issue is thus the focus of the current work. Furthermore, I explore the following
research gap: Do flexibility solutions alter the allocative efficiency in electricity systems
under a mix of energy and climate policies, such as the RPS and ETS?

To solve this question, I use the methodology developed in (12). To explore the al-
locative efficiency of flexibility solutions interacting with energy and climate policies, I use
the first wave of COVID-19 in the German day-ahead electricity market as a exogenous
shock on the demand side. Using this event as point of inflection, I make parallels be-
tween pre-COVID-19 and post-COVID-19 data. This allows me to observe a “fattening
the duck” type solution post-COVID-19, likely the result of a reduction in minimum gen-
eration requirements on the supply side (or a reduction of the base load). I thus compare
the low-boundary economic implications in these two states, namely, the effect on pass-
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through of input costs and on the distribution of wealth between consumers and producers.

The remainder of the article follows this structure. Section 2 explains the global and
local context of COVID-19 and, for Germany, weather conditions and fluctuations of key
electricity market determinants. I also describe the data used in this study. Section
3 summarizes the methodology used for measuring the pass-through of input costs and
welfare distribution. Section 4 compares the results, pre- and post-COVID-19. Section 5
discusses the implications and limitations of this study and Section 6 concludes.

2 Background and Data

2.1 Global and local context

A pneumonia case of unknown causes was reported to the World Health Organization
(WHO) office in China on December 31, 2019. After a couple of months of worldwide
alert, on March 11, 2020, the WHO elevated COVID-19 to the level of a global pandemic
(13). Around the world, a wide array of national strategies was implemented to contain
COVID-19, resulting as well in higher (or lower) infections per capita. Figure 1 shows
the 7-day rolling average of new COVID-19 cases of various countries, including Germany,
from all continents (with the exception of the Antarctica), up to December 2020. In Ger-
many, the Robert Koch Institute published a national pandemic plan on March 5, 2020
(14). In the following days, on March 18, 2020, Angela Merkel declared COVID-19 to be
“the greatest challenge since World War II” (15), which officially started the beginning of
the first wave of COVID-19 in Germany. For the purposes of this study, I split the data
using March 11, 2020 as the crucial date reflecting the point of inflection that separates
the pre-COVID-19 from the post-COVID-19 analysis of the first wave.

Before and during the first wave of COVID-19, Germany also registered temperature
anomalies between 1◦C to 2◦C higher compared to the previous year in the months of
January, February, April, and May (see Figure 2). March was the exception, with lower
temperatures anomalies, between 1.5◦C and 2.5◦C, compared to the previous year (16).
Post-COVID-19, day-ahead electricity prices and fuel input prices were lower than pre-
COVID-19, which coincided with lower demand levels and higher renewable shares from
wind and solar, see Figures 3 and 4.
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Figure 1: 7-Day rolling average of COVID-19 new cases, from December 2019 to December
2020

Figure 2: Temperature anomalies between January and May in 2019 and 2020
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Figure 3: Electricity prices and fuel input costs for December 23 to May 31 between 2018
and 2019, and December 23 to May 31 between 2019 and 2020
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2.2 Data

I constructed four samples using hourly data from public and private sources. Panel A
includes data between December 23 to March 10 of the years 2018 - 2019 (19a) and 2019 -
2020 (20a). Panel B includes data from March 11 to May 31 of both, 2019 (19b) and 2020
(20b). I use the SMARD database to obtain the aggregate real and forecast demand1, elec-
tricity production, and day-ahead prices. Electricity production of each of the 118 plants
come from AURORA and ENTSO-e (see Table 1). Production from these plants with
installed capacities above 100 MW sum up to 54% on average of total domestic demand.
The analysis includes pump storage, hydro, nuclear, lignite, coal, gas, oil, solar, and wind
offshore and onshore technologies. I use commodity prices (coal, gas and CO2) as supply
instruments. These data come from AURORA database; the ARA coal spot price (CIF
without transportation fees); the Gaspool price; and the Brent crude oil price for Germany.
Since commodities register prices only on weekdays, I consider, similar to other studies,
the last weekday available as the value for weekends and holidays. CO2 spot prices come
from the EEX database under EUSP contracts. I also shift the day-ahead electricity price
one day after to match it to commodity prices. The demand instruments include data on
temperature from the Deutscher Wetterdienst. Data on the CO2 emissions rate of fossil
fuels comes from the Umweltbundesamt. I obtain heat rates and installed capacities per
plant from the Open Power Project. Finally, some hours do not register measurements of
electricity production or temperature; when these are point estimates, I take the average
of the previous and following data. But longer periods of time with missing data and with
share values equal to zero result in a loss of about 52% of a total of 916,776 observations.
Tables 1, 2, 3, and 4 describe the statistics of the variables I use to construct the supply and
demand curves. I gather data on plant operations that use combined heat power (CHP),
similar to (12). I then use these data to examine the pass-through and welfare implications
corresponding to the observed changes in the consumption pattern, which resulted in a
more pronounced duck curve post-COVID-19 (see Figure 5 of Section 4, panels A and B).
Similar to (12) I divide the day into three blocks of hours: an off-peak block from 20:00 to
06:00 (night), a peak 1 block from 6:00 to 13:00 (morning), and a peak 2 block from 13:00
to 20:00 (afternoon). Finally, for this study I also use the ramping assumptions considered
in (12).

1I use the forecast demand to draw net load curves.
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Table 1: Plants analyzed in this study with capacities higher than 100 MW
Technology Plant

CHP must-run 1
Coal 37
Gas steam turbine 4
Gas OCGT 1
Gas CCGT 24
Hydro 4
Nuclear 7
Lignite 9
Oil steam turbine 2
Oil OCGT 1
Other fossil fuel 2
Other renewables 2
Pump storage 13
Wind offshore 10
Wind onshore 1

Total plants 118

I model an artificial must-run CHP plant. OCGT refers to open cycle gas turbine and CCGT refers to
combined cycle gas turbine. The category “other fossil fuel” corresponds to a gas-fired plant using as
fuels blast furnace gas, coke oven gas, or natural gas. The category “other renewables” corresponds to
waste (12).

Table 2: Descriptive statistics for Dec 23, 2018 to March 10, 2019
Mean Standard deviation Min. Max.

Market share 0.009 0.020 0.000 0.347
Day-ahead price (e/MWh) 46.131 18.927 -48.930 121.460
Load factor 0.565 0.305 0.000 1.000
Temperature 2.957 4.880 -22.400 20.600
Fuel costs (e/MWh) 21.340 20.643 0.000 98.005
CO2 costs (e/MWh) 9.790 9.130 0.000 30.457
Coal prices (e/MWh) 4.987 5.162 0.000 11.410
Gas prices (e/MWh) 9.914 10.336 0.000 24.870
CO2 prices (e/MWh) 10.867 11.284 0.000 25.020
Observations 130,693

Fuel costs equal fuel price multiplied by the heat rate factor. CO2 costs equal CO2 prices multiplied by
the heat rate factor and corresponding emission factor. I include costs of oil plants in the analysis, but
I exclude prices of oil as supply side instrument.
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Table 3: Descriptive statistics for March 11 to May 31, 2019
Mean Standard deviation Min. Max.

Market share 0.009 0.019 0.000 0.378
Day-ahead price (e/MWh) 36.713 13.539 -83.010 68.610
Load factor 0.494 0.303 0.000 1.000
Temperature 8.855 5.516 -17.600 27.300
Fuel costs (e/MWh) 17.226 19.317 0.000 111.464
CO2 costs (e/MWh) 10.118 10.182 0.000 33.427
Coal prices (e/MWh) 3.565 4.124 0.000 9.630
Gas prices (e/MWh) 6.504 7.517 0.000 17.180
CO2 prices (e/MWh) 10.541 12.204 0.000 27.460
Observations 113,920

Fuel costs equal fuel price multiplied by the heat-rate factor. CO2 costs equal CO2 prices multiplied by
the heat-rate factor and corresponding emission factor. I include costs of oil plants in the analysis, but
I exclude prices of oil as supply side instrument.

Table 4: Descriptive statistics for Dec 23, 2019 to March 10, 2020
Mean Standard deviation Min. Max.

Market share 0.009 0.309 0.000 0.020
Day-ahead price (e/MWh) 30.834 14.528 -32.140 68.64
Load factor 0.530 0.310 0.000 1.000
Temperature 4.221 3.886 -18.700 20.400
Fuel costs (e/MWh) 15.447 16.253 0.000 102.051
CO2 costs (e/MWh) 10.230 9.828 0.000 32.331
Coal prices (e/MWh) 3.212 3.457 0.000 7.390
Gas prices (e/MWh) 5.013 5.453 0.000 13.430
CO2 prices (e/MWh) 11.293 12.150 0.000 26.560
Observations 104,260

Fuel costs equal fuel price multiplied by the heat-rate factor. CO2 costs equal CO2 prices multiplied by
the heat-rate factor and corresponding emission factor. I include costs of oil plants in the analysis, but
I exclude prices of oil as supply side instrument.

Table 5: Descriptive statistics for March 11 to May 31, 2020
Mean Standard deviation Min. Max.

Market share 0.007 0.016 0.000 0.235
Day-ahead price (e/MWh) 18.936 14.139 -83.940 69.680
Load factor 0.397 0.289 0.000 1.000
Temperature 9.626 5.859 -11.100 27.700
Fuel costs (e/MWh) 11.017 9.769 0.000 53.021
CO2 costs (e/MWh) 8.346 8.264 0.000 29.081
Coal prices (e/MWh) 2.628 3.092 0.000 7.030
Gas prices (e/MWh) 2.938 3.568 0.000 9.690
CO2 prices (e/MWh) 8.259 9.743 0.000 23.890
Observations 87,769

Fuel costs equal fuel price multiplied by the heat-rate factor. CO2 costs equal CO2 prices multiplied by
the heat-rate factor and corresponding emission factor. I include costs of oil plants in the analysis, but
I exclude prices of oil as supply side instrument.
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3 Methodology

I use the highly parametrized model developed in (12). This methodology allows one to
represent the intermittency of renewables on the demand side using a random logit, and
it allows a linear approximation of the supply side. It solves a joint equilibrium under
Bertrand competition using the pyblp package (17). I then compare the four samples in
the following manner. First, within the time frame in Panel A, I calculate the average
percentage change between 2018-2019 and 2019-2020. In a similar manner, I obtain the
second difference within the time frame in Panel B, as the percentage change between
2018-2019 and 2019-2020. Finally, I and report the third difference using these average
percentage points as post-COVID-19 metrics, from March 11, 2020 to May 31, 2020.

4 Results

I show the net load patterns pre- and post-COVID-19 in Figure 5. Panel A shows a lower
net load in 2020 compared to 2019, both pre-COVID-19, but almost no change in flexibility
requirements. The lowest point of the night valley was 23,197 MW at 02:00 in 2020, and
the ramping requirement in the morning between 04:00 and 07:00 increased by 1525 MW
in 2020, with an average value for the two years of 11,252 MW. During the afternoon peak,
the lowest point of the afternoon valley was 34,576 MW at 14:00 in 2020, and the ramping
requirement between 16:00 and 19:00 increased by 174 MW from 2019 to 2020, with an
average value of 2,348 MW.

In contrast, Panel B shows a “fattening of the duck” phenomenon for both, 2019 and
2020. In this case, we observe a more pronounced valley in the afternoon post-COVID-19.
The lowest point of the night valley was 28,014 MW at 02:00 in 2020, and the ramping
requirement in the morning between 04:00 and 07:00, decreased by 1,625 MW in 2020,
with an average value for the two years of 8,351 MW. During the afternoon peak, the
lowest point of the afternoon valley was 21,974 MW at 14:00 in 2020, and the ramping
requirement between 16:00 and 19:00 increased by 4,501 MW from 2019 to 2020, with an
average value of 12,817 MW, and a maximum value of 15,068 MW post-COVID-19.

Overall post-COVID-19, ramping requirements decreased in the morning by 32 per-
centage points and increased in the afternoon by 35 percentage points.

4.1 Pass-through of input costs

Panel A of Figure 6 shows a slightly higher pass-through of fuel costs for 2020 compared
to 2019, pre-COVID-19, and a small upward trend from off-peak to peak 2, with a daily
average of 0.73. In contrast, Panel B shows values close to unity for all blocks of hours
post-COVID-19, higher than the same period in 2019. Post-COVID-19, the lowest value
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Figure 5: Duck Curve for December 23 to May 31 between 2018 and 2019, and December
23 to May 31 between 2019 and 2020

of the pass-through of fuel costs coincided with the afternoon valley. Comparing Panel
A with B, post-COVID-19 the pass-through of fuel costs spiked 63 percentage points on
average.

In the opposite direction of the results of pass-through of fuel costs, Panel A of Figure
7 shows that pre-COVID-19, there was a much lower pass-through of CO2 costs for 2020
compared to 2019, and a small downward trend from off-peak to peak 2, with a daily av-
erage of 0.78. Similar to Panel A, Panel B shows a daily average of 0.58 post-COVID-19,
lower than the same period in 2019. Post-COVID-19, the highest value of pass-through
of CO2 costs coincided with the afternoon valley. Comparing Panel A with B, the pass-
through of CO2 costs went down 10 percentage points on average post-COVID-19. In both
panels and pre-COVID-19, the highest values of pass-through of CO2 costs also coincided
with the afternoon valley.

Electricity prices are less sensitive to fuel costs during the afternoon valley. Electricity
prices are more sensitive to CO2 costs during the morning. The ramping cost coefficients
are positive in most cases and not significant in the afternoon and at night post-COVID-19.

To obtain a more general view, I also show results for the total pass-through of in-
put costs, including ramping costs, which show an average daily increase of 32 percentage
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points post-COVID-19. In total, about three quarters of total input costs were passed
through to electricity prices post-COVID-19 (Figure 8).
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Figure 6: Fuel pass through for the periods of analysis

4.2 Welfare

Panel A of Figure 9 shows that pre-COVID-19, there was a lower total welfare level mainly
for consumers. In contrast, Panel B shows a trend with small higher total gains for both
actors at off-peak hours in addition to the afternoon peak. Consumers’ total welfare was on
average 12 percentage points lower post-COVID-19. Post-COVID-19, the highest loss was
found at 14:00 with -35 percentage points, followed by small gains in the afternoon peak
with 10 percentage points. Producers’ total welfare was also negative post-COVID-19, but
it shows an increase of an average of 59 percentage points. The lowest post-COVID-19
gain was found at 15:00, with 49 percentage points, followed by gains in the afternoon
peak with 76 percentage points.

The distributional gap between consumers and producers was reduced by 36% on av-
erage during the day, but overall, consumers lost significantly more welfare compared to
producers post-COVID-19.
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Figure 7: CO2 pass through for the periods of analysis
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Figure 8: Total pass through the periods of analysis
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Figure 9: Consumer and Producer surplus for the periods of analysis

5 Discussion

I find that the type of flexibility response studied in this analysis corresponded to a “fat-
tening the duck” strategy under ETS and RPS policies. This produced mainly negative
economic outcomes, with respect to the pass-through of fuel costs and total welfare levels.
I also find, to a lesser extent, positive economic outcomes related to a reduction in the
welfare gap between consumers and producers throughout the day, reduced losses for pro-
ducers, and the slightly increase in consumption pattern in the afternoon. These results
follow the lowest point of the valley of the duck curve. Moreover, they correspond to the
observed decreases and increases in consumption patterns. The lowest point of the valley,
both pre- and post-COVID-19 is associated with the highest values of price elasticity of
demand, lowest values of pass-through of fuel costs, and lowest welfare levels for producers
and consumers. Post-COVID-19, a negative consumption pattern in net load is also asso-
ciated with the lowest value of pass-through of fuel costs and lower or equal welfare levels
for producers and consumers. In contrast, a positive consumption pattern in net load is
associated with higher welfare levels, more so for consumers than producers, and higher
values of pass-through of fuel costs. Overall, the results coincide with lower average values
of: electricity prices, fuel costs, and net load in 2020, both pre- and post- COVID-19.
One exception is the pattern observed in estimates of the pass-through of CO2 costs. These
do not show a clear association, and seem to be independent of the type of flexibility re-
sponse studied in this analysis.

It is also relevant to note that in 2020 there share of renewables was 40%, whereas
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in the previous period it was 32%. In addition, CO2 emissions were reduced on average
22% in 2020 compared to the previous year. For lignite, shares and emissions dropped on
average 7% and 8% respectively, from 2019 to 2020 (Figure 10).
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Figure 10: CO2 emissions for the periods of analysis

A mechanism that potentially explains the type of flexibility observed post-COVID-19
is that the minimum generation available from must-run conventional generation is re-
duced to avoid curtailing renewables and to mitigate oversupply. In their second report,
(18) defined the minimum generation as the share of conventional generation base load that
is available to be reduced when day-ahead electricity prices are negative. The minimum
generation pertains to the following services: positive redispatch service, positive control
reserve, negative control power, and securement of the negative control reserve. It can also
be activated for other services, including the instantaneous reserve, voltage maintenance,
and short-circuit power. Because these additional services can also cause variation in the
minimum generation levels, its real quantity is not available to date. For the years 2016 -
2018, the lower boundary of the share of minimum generation was between 38% and 61%.
This high variability is due to the variation in individual plant requirements, whereby less
responsive plants were operating for heat production. Moreover, although the lowest points
of the valley of the duck curve coincided with higher values of price elasticity of demand
during the day, the resulting post-COVID-19 value (-0.16) is still very low. It is thus likely
that the benefits of flexibility responses for a minimum generation reduction are of limited
range and incomplete for the electricity market. A limitation in this regard, is that it is
difficult to precisely quantify renewable production and its associated reduction in green-

16



house gases that could have been curtailed but remained available to the system due to
the reduction in the minimum generation.

A reason for the observed rigidity in the response of CO2 costs to electricity prices
might be that the observed reduction in CO2 emissions that coincided with higher shares
of renewables in the grid, also activated the reduction of the short-term oversupply of al-
lowances and motivated their cancellation under the functioning market stability reserve
(19). In addition, CO2 prices dropped on average 30% pre- to post-COVID-19 during the
first wave in 2020.

Overall, we might wonder whether there are reasons to expect that the observed elec-
tricity consumption pattern will hold in the future. Using smart meter data from Texas
in the US, (20) found that daily routines changed during the pandemic, and residential
consumption increased, while industrial consumption dropped. In addition, (21) argues
that 22% of all full work days will be supplied from home in the US post-COVID-19.
Furthermore, they found a potential of 2.4% higher productivity of working from home
rather than at the office. Thus, they conclude that working from home will stick in the
US. Since the results of the current study show that after the first wave there was a change
in consumption patterns, with a reduction in the morning and an increase at night, it is
plausible that this trend will hold as well in Germany.

Through the lens of a lower-boundary study and expanding the methodological frame-
work in (12) to include flexibility and temperature anomalies as additional drivers (see
Figure 11 in Appendix B for a causal diagram), this analysis is thus relevant for discus-
sions about the future of flexibility regulations under current energy and climate policies.
Moreover, it sheds light on the economic implications of flexibility under the “fattening the
duck” strategy, which was likely the result of a reduction in the minimum generation. This
study is limited by the fact that it did not analyze the heterogeneity in consumers and
producers and the exact quantification of the minimum generation responsiveness, which
were not possible with the data used. In addition, assessing whether the benefits from a
31% reduction of greenhouse gases exceeded the losses in welfare was beyond the scope of
this study.

Future studies could analyze whether there could be more integral ways to add higher
levels of responsiveness of CO2 costs into daily system flexibility requirements. Analyzing
the effects of differentiated carbon price controls during the day could add more insight to
the design of electricity tariffs. Furthermore, studying the allocative efficiency of positive
demand responses (7) on the base load versus the reduction of the minimum generation
would be another way to analyze the economic impacts of different types of flexibility re-
sponses.
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This study also contributes to the discussion of efficient pricing structures under cur-
rent climate policies. As electricity systems with high shares of renewables transition to a
low-carbon economy, flexibility requirements will become more important to reflect scarcity
conditions in electricity tariffs. They could also reduce the extent of transmission expansion
due to congestion. In their study, (22) argues that electricity systems with high renewable
shares continue to challenge the paradigm of representing the supply of electricity as a ho-
mogeneous good that meets a consistent consumer pattern. In addition, liquid innovative
derivative products between suppliers and retails, and cap-style pricing contracts for con-
sumption of a fixed capacity band would be optimal for consumers in Australia. However,
the question of whether the marginal cost of an extra unit of energy would be trivial in
systems under high renewable expansion, as result of achieving an equalizing goal between
off-peak and peak hours (also due to storage), is open to further discussion.

6 Conclusion

Considering RPS and ETS policies, this study analysed the economic impacts of flexibility
under a “fattening the duck” strategy from the supply side, likely the result of a reduction
in minimum generation. I used COVID-19 as source of exogenous shock on the demand
side, and I employed a model that represents the uncertainty from intermittent renewables
on the demand side as non-price and price determinants of demand. During the first
wave of COVID-19, I found that the low positive economic impacts derived from flexibility
responses of this type were overridden by negative economic impacts on the day-ahead
electricity market.
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Table 6: Pass-through of input costs
01.01 - 10.03 11.03 - 31.05
2018-2019 2019-2020 2018-2019 2019-2020

(1) (2) Markets (3) (4) Markets

Fuel costs (γ1)
off-peak 0.568∗∗∗ 0.649∗∗∗ 777/789 0.530∗∗∗ 0.979∗∗∗ 813/818

(0.006) (0.009) (0.010) (0.006)
peak1 0.685∗∗∗ 0.761∗∗∗ 538/553 0.544∗∗∗ 0.941∗∗∗ 573/574

(0.008) (0.125) (0.013) (0.009)
peak2 0.598∗∗∗ 0.771∗∗∗ 539/553 0.563∗∗∗ 1.040∗∗∗ 574/574

(0.014) (0.027) (0.028) (0.011)
CO2 costs (γ2)
off-peak 1.344∗∗∗ 0.688∗∗∗ 777/789 0.856∗∗∗ 0.577∗∗∗ 813/818

(0.033) (0.015) (0.040) (0.006)
peak1 1.698∗∗∗ 0.806∗ 538/553 1.053∗∗∗ 0.617∗∗∗ 573/574

(0.050) (0.359) (0.070) (0.008)
peak2 1.412∗∗∗ 0.830∗∗∗ 539/553 0.918∗∗∗ 0.559∗∗∗ 574/574

(0.011) (0.075) (0.110) (0.012)
Ramping costs (γ3)
off-peak 0.091∗∗∗ 0.091∗∗∗ 777/789 0.109∗∗∗ 0.118∗∗∗ 813/818

(0.015) (0.010) (0.010) (0.012)
peak1 −0.089∗∗∗ 0.090 538/553 0.049∗∗ 0.152∗∗∗ 573/574

(0.023) (0.063) (0.017) (0.018)
peak2 −0.065∗∗∗ 0.000 539/553 0.044∗∗ 0.103∗∗∗ 574/574

(0.024) (0.021) (0.015) (0.020)
Price (γ1)
off-peak −11.500 −0.252∗∗∗ 777/789 −0.144∗∗∗ −48.803∗∗∗ 813/818

(84.890) (0.047) (0.024) (0.426)
peak1 −6.508 −0.157 538/553 −0.137∗∗∗ −84.000∗∗∗ 573/574

(34.868) (0.211) (0.0309) (0.886)
peak2 −0.114∗∗∗ −0.150∗∗∗ 539/553 −0.159∗ −41.530 574/574

(0.007) (0.041) (0.077) (1145)
Load (γ2)
off-peak −2385, 84 0.045 777/789 0.006 −4216∗∗∗ 813/818

(22000) (266.756) (358.037) (0.005)
peak1 −2543.030 0.034 538/553 0.001 −5354.760∗∗∗ 573/574

(13024) (3730.861) (3660) (0.014)
peak2 0.009 0.029 539/553 0.003 −2391.130 574/574

(381.318) (633.866) (1931) (65976.82)
GMM Objective 1.38E+03 2.69E+03 9.26E+02 6.48E+02

I apply a low cost bound of e24.99/MWh. I report the highest GMM Objective for off-peak, peak 1, and peak 2
subsamples.
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Table 7: Total pass-through of input costs
01.01 - 10.03 11.03 - 31.05
2018-2019 2019-2020 2018-2019 2019-2020

(1) (2) Markets (3) (4) Markets

Total costs (γ1)
off-peak 0.762∗∗∗ 0.660∗∗∗777/789 0.626∗∗∗ 0.765∗∗∗813/818

(0.008) (0.010) (0.016) (0.008)
peak1 0.948∗∗∗ 0.773∗∗∗538/553 0.706∗∗∗ 0.763∗∗∗573/574

(0.014) (0.120) (0.126) (0.009)
peak2 0.956∗∗∗ 0.796∗∗∗539/553 0.672∗∗∗ 0.778∗∗∗574/574

(0.019) (0.055) (0.036) (0.006)
Price (γ1)
off-peak −8.110 −0.252∗∗∗777/789 −0.145∗∗∗ −0.253∗ 813/818

(36.204) (0.050) (0.021) (0.131)
peak1 −7.379 −0.158 538/553 −0.138∗∗∗ −0.318∗ 573/574

(38.089) (0.131) (0.023) (0.149)
peak2 −1.072 −0.150∗∗ 539/553 −0.159∗∗ −0.353∗∗∗574/574

(1.124) (0.054) (0.055) (0.103)
Load (γ2)
off-peak −1691.920 0.044 777/789 0.004 0.002 813/818

(7770) (281) (315) (2407)
peak1 −2895.890 0.030 538/553 0.001 −0.001 573/574

(14595) (2274) (2746) (1204)
peak2 1461.955 0.024 539/553 0.002 0.004 574/574

(1628) (844) (1349) (1098)

GMM Objective 1.21E+03 5.68E+02 1.75E+03 1.63E+03

I apply a low cost bound of e24.99/MWh. I report the highest GMM Objective for off-peak, peak 1, and
peak 2 subsamples.
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B Appendix

Figure 11: Drivers analyzed in this study. Confounders are denoted with (*)
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